

www.ko-ki.co.jp

#47012E 2011.09.27

LEAD FREE solder paste

TOYOTA's recommended solder paste for automotive electronics

Product information

This Product Information contains product performance assessed strictly according to our own test procedures and may not be compatible with results at end-users.

Product Features

- Alloy composition: Sn96.5Ag3.0Cu0.5
- Highly reliable flux residue
- Crack-free in flux residue after 1000 thermal cycles of -40°C / +125°C

GSP

- Prevent the occurrence of capillary balling through 4-hour continual printing
- Excelling wetting to lead frames of QFP and SOP
- Residue adhesion is extremely low
- Specially designed for automotive electronics e.g. ECU, EV, EHV, to be used in N² environment

Contents Features

Specifications

Application	Printing - Stencil	
Product	G S P	
Composition (%)	Sn96.5 Ag3.0 Cu0.5	
Melting point (°C)	217 — 219	
Shape	Spherical	
Particle size (μm)	20 - 38	
Halide content (%)	0.06	
Flux content (%)	10.9 ± 0.5	
Viscosity* (Pa.S)	160 ± 30	
Copper plate corrosion**	Passed	
Tack time	24 hours	
Shelf life (below 10°C)	6 months	
	ApplicationProductComposition (%)Melting point (°C)Melting point (°C)ShapeParticle size (µm)Halide content (%)Flux content (%)Viscosity* (Pa.S)Viscopper plate corrosion**Tack timeShelf life (below 10°C)	

* Viscosity

Malcom spiral type viscometer, PCU-205 at 25°C 10rpm (Processing before measurement: Malcom sofner SPS-1 at 12min)

**Copper plate corrosion In a

In accordance with JIS Z 3197

Product identification

GSP

This product has been designed and co-developed by Toyota Motor Corporation with the objective of improving the quality, cost performance, and lead time of automotive electronics to be used in N_2 environment.

Toyota group GSP co-development participated by: Toyota Motor Corporation / Denso Corporation / Fujitsu Ten Limited

Product name 'GSP' stands for *Global Solder Paste.* Note that the conventional product identification system of Koki does not apply.

Contents **Continual printability**

Handling guide

- Squeegee Metal blade, angle 60°
- Print speed
- Stencil
 0.15mm thickness, laser cut

40mm/sec.

- Stencil separation speed 10mm/sec
- Atmosphere 25±1°C, 50±10%RH
- Test patterns
- QFP pad pattern 0.4mm pitch, Length 1.5mm, Width 0.2mm
- CSP pad pattern Diameter 0.30mm

Excellent and consistent printability through 100 prints.

Viscosity variation in continual printing

- Print (knead) solder paste on the sealed-up stencil continually and observe viscosity variation.
- Squeegee Metal blade, Angle 60°
- Squeegee speed 30mm/sec.
- Print stroke 300mm
- Printing environment $25 \pm 1^{\circ}$ C, $50 \pm 10^{\circ}$ RH

Specially formulated flux chemistry has succeeded in minimizing chemical reaction between solder powder and flux during print rolling, thus exhibiting consistent long term printability.

Thermal cycling

- Cycle condition
- Material
- Surface treatment
- Stencil thickness
- Component
 - Stencil aperture
 - Reflow machine
- Atmosphere
- Reflow profile

- +40/+125°C x 1000 cycles Glass epoxy FR-4
- OSP
- 0.18mm (laser cut)
- 0.65mm pitch QFP

See below

- 100% aperture opening to pad
- Koki Tech APSR-257
- $N_2(O_2 \text{ concentration} < 1500 \text{ ppm})$

No notable cracking in the residue through 1000 cycles.

After 1000 cycles

Tack time

- Stencil
- Measurement instrument
- Probe pressure
- Pressurizing time
- · Pull speed
- Test method
- Test environment

- 0.2mm thick, 6.5mm dia. aperture
- Malcom tackimeter TK-1
- 50gf

- 0.2sec 10mm/sec.
- JIS Z 3284
- 25±1°C, 50±10%RH

Unique solvent system successfully assures sufficient tack time.

Features	
Specifications	
Continual printability	
Viscosity variation	
Thermal cycling	
Tack time	
Heat slump	
Solder balling	
Wetting	
Capillary balling	
Voiding	
Solder spreading	
Voltage applied SIR	
Halide content	
Dryness	
Handling guide	

Heat slump

- Stencil thickness
- Stencil aperture
- 0.2mm Pattern (1) 3.0mm x 0.7mmm Pattern (2) 3.0mm x 1.5mm

180°C X 5min.

- Spacing between apertures 0.2mm to 1.2mm
- Heat profile

Improved heat slump property assures reduced soldering defects, such as solder beading and bridging.

10

Contents

- Stencil
- Stencil aperture
- Solder pot temperature 25
- Test method
- 250°C JIS Z 3284

6.5mm diameter

0.2mm

Category 1234 \circ \circ

CHALLENGING NEW TECHNOLOGIES

Wetting test

- Material
- Surface treatment
- Stencil thickness
- Component
- Stencil aperture
- Reflow machine
- Atmosphere
- Reflow profile

- Glass epoxy FR-4
- tment OSP
 - 0.18mm (laser cut)
 - 0.65mm pitch QFP
 - 100% aperture opening to pad
 - e Koki Tech APSR-257
 - $N_2(O_2 \text{ concentration 1500ppm})$ See below

0.65mm Pich QFP

Complete coalescence by minimum deterioration of barrier performances through 4-hour kneading.

12

Contents Capillary balling

Capillary balling

- Material
- Glass epoxy FR-4 eatment OSP
- Surface treatment
- Stencil thickness 0.15mm (laser cut)
- Stencil aperture 100% aperture opening to pad
- Component 2125R 30 pieces / board
- Reflow profile Same as "Wetting test"

Conventional product

The occurrence of capillary balls is contained through 4-hour kneading.

GSP

Voiding

- Material
- Surface treatment
- Stencil thickness
- Stencil aperture
- Components
- PwTr
- 2125R
- 1.0mm pitch BGA
- Reflow profile
- OSP 0.15mm (Laser cut) 100% aperture opening to pad
- 100% Sn plated 100% Sn plated Sn96.5Ag3.0Cu0.5 Same as "Wetting test"

Glass epoxy FR-4

Prolonged kneading time does not affect the occurrence of voids.

Solder spreading

- Material piece Copper, Brass, Nickel
- Stencil thickness 0.2mm (laser cut)
- Stencil aperture 6.5mm diameter
- Heat source & temp. Same as "Wetting test"

- Category 1: Solder has spread more than the area where solder paste was printed.
- Category 2 : Solder has spread whole area where solder paste was printed.
- Category 3 : Solder has not partially spread.
- Category 4 : Solder spread is less than the area where solder paste was printed (non-wetting)

Solder spreads well to all of the materials.

No evidence of electro-migration.

Test conditions

•Stencil thickness

•Voltage applied

1.E+14

1.E+13

•Comb type electrode

•Measurement voltage

Halide content

- Test method
- JIS Z 3197 (Potentiometric titration method)
- Measurement instrument
- AT-400 (Kyoto Electronics Manufacturing)

			(,,,)
n1	n2	n3	AVE
0.06108	0.06113	0.05943	0.0606

* Figures are converted into Chlorine.

(%)

17

Contents

Dryness

Material piece Copper plate

Initial

- Stencil thickness
- 0.2mm (laser cut)
- Stencil aperture
- 6.5mm diameter Same as "*Wetting test*"
- Heat source & temp. Judge
- chalk powder on flux residue are softly brushed.

After brushing of chalk powder

Chalk powder can be easily removed by a soft brush.

Contents	Handling guide	
Features	rianuling guide	
roataroo	1. Printing	
Specifications	1) Recommended printing pa	arameters
	(1) Squeegee	
Continual printability	1. Kind	: Flat
Viscosity variation	2. Material	: Rubber or metal blade
Viscosity variation	3. Angle	: 60°
Thermal cycling	4. Pressure	: 40N
mermai cycling	5. Squeegee speed	: 20~40mm/sec.
Tack time	(2) Stencil	
	1. Thickness	: $180 \sim 150 \mu$ m for 0.65mm pitch pattern
Heat slump		$120 \sim 100 \mu$ m for 0.5 ~ 0.4 mm pitch pattern
	2. Type:	: Laser or electroform
Solder bailing	3. Separation speed	: 7.0~10.0mm/sec.
Wetting	4. Snap-off distance	: Omm
Wetting		
Capillary balling	(3) Ambiance	
	1. Lemperature	: 22~25°C
Voiding	2. Humidity	: 40~60%RH
	3. Air draft	: Air draft in the printer badly affects stencil life and tack performance of
Solder spreading	2. Shalf life	solder pastes.
		· 6 months from monufacturing data
Voltage applied SIR	0~100	. 6 months from manufacturing date
Halide content	* Manufacturing date can be obtained from the lot number	
	ex. Lot No. 0	05 15 2
Dryness		\frown \Box \Box No. of lot : 2nd
		Date : 15 th
Handling guide		└───→ Month : May
	l	→ Year : 2010

Handling guide

Exclusively designed for N₂ environment (Atmospheric environment not recommended).

Recommended O_2 concentration is below 1500ppm. However, it may require ample studies before use as the optimum parameters may vary depending on the machine and environment.

